บทที่ 1 อะตอมและตารางธาตุ

โครงสร้างอะตอม

ดีโมครีตัส ( นักปราชญ์ชาวกรีก) ได้กล่าวว่าทุกสิ่งทุกอย่างประกอบขึ้นจาก อนุภาคที่เล็กมาก เล็กมากจนไม่สามารถมองเห็นได้ อนุภาคเล็กๆ เหล่านี้จะรวมพวกเข้าด้วยกันโดยวิธิการต่างๆสำหรับอนุภาคเองนั้นไม่มีการเปลี่ยนแปลงและไม่สามารถจะแตกแยกออกเป็นชิ้นส่วนที่เล็กลงไปอีก ได้ ดีโมครี- ตัสตั้งชื่ออนุภาคนี้ว่า" อะตอม (Atom)"

แบบจำลองอะตอมของจอห์นดอลตันจอห์น ดอลตัน
นักวิทยาศาสตร์ชาวอังกฤษได้เสนอทฤษฎีอะตอมโดยอาศัยข้อมูลจากการทดลองที่พอจะศึกษาได้และนับว่าเป็นทฤษฎีแรกที่เกี่ยวกับอะตอมที่พอจะเชื่อถือได้ ซึ่งมีใจความดังนี้
 -สารทุกชนิดประกอบด้วยอนุภาคขนาดเล็กที่สุดเรียกว่า “ อะตอม”

 -อะตอมจะไม่สามารถแบ่งแยกได้ และไม่สามารถสร้างขึ้นใหม่ได้

-อะตอมของธาตุชนิดเดียวกันจะมีสมบัติเหมือนกันทุกประการ

 -อะตอมของธาตุต่างกันจะมีสมบัติต่างกัน

- สารประกอบเกิดจากอะตอมของธาตุมากกว่า 1 ชนิด ทำปฏิกิริยากันในอัตราส่วนที่เป็นเลขลงตัวอย่างง่าย

นักวิทยาศาสตร์รุ่นต่อมาได้ศึกษาเกี่ยวกับอะตอมเพิ่มขึ้นพบว่าข้อมูลบางประการไม่สอดคล้องกับดาลตัน เช่น อะตอมของธาตุชนิดเดียวกัน อาจมีมวล แตกต่างกันได้  และอะตอมสามารถแบ่งแยกได้ นักวิทยาศาสตร์ได้ศึกษาเพิ่มเติม และจึงได้พัฒนาแบบจำลองอะตอมขึ้นมาใหม่








แบบจำลองอะตอมของทอมสัน
อะตอม ประกอบด้วย อนุภาคโปรตอนและอิเล็กตรอนกระจายอยู่ทั่วไปอย่างสม่ำเสมอ อะตอมในสภาพที่เป็นกลางทางไฟฟ้าจะมีจำนวนประจุบวกเท่ากับประจุลบ
เซอร์โจเซฟ จอห์น ทอมสัน นักวิทยาศาสตร์ชาวอังกฤษ ได้ทำการศึกษาและทดลองเกี่ยวกับการนำไฟฟ้าของก๊าซโดยใช้หลอดรังสีแคโทด ได้ผลสรุปด้งนี้
ค่าอัตราส่วนประจุต่อมวลของอนุภาคลบหรืออิเล็กตรอน (e ) มีค่าเท่ากับ  คูลอมบ์ต่อกรัม ซึ่งมีค่าคงที่เสมอไม่ขึ้นอยู่กับชนิดของก๊าซและโลหะที่ใช้ทำแคโทด

สรุปแบบจำลองอะตอมของทอมสัน
อะตอมมีลักษณะเป็นทรงกลุม มีอนุภาคที่มีประจุบวก เรียกว่า โปรตอน อนุภาคที่มีประจุลบ เรียกว่า อิเล็กตรอน และจำนวนโปรตอนเท่ากับจำนวนอิเล็กตรอนกระจายอยู่ทั่วไปในทรงกลม
การทดลองที่สนับสนุนแบบจำลองอะตอมของทอมสัน
 สโตนีย์ ได้ศึกษาผลงานของฟาราเดย์ และเป็นผู้สรุปว่า ไฟฟ้าประกอบด้วยอนุภาคทางไฟฟ้าและตั้งชื่ออนุภาคนี้ว่า อิเล็กตรอน ซึ่งเป็นอนุภาคขนาดเล็กในอะตอมของธาตุ
 ฟาราเดย์ ได้ศึกษาเกี่ยวกับการแยกสารละลายด้วยกระแสไฟฟ้าและได้ตั้งกฏการแยกสารด้วยไฟฟ้า
รอเบิร์ต แอนดูรส์ มิลลิแกน ได้ทำการทดลองต่อจากทอมสัน เพื่อหาประจุที่มีอยู่ในอิเล็กตรอนแต่ละตัว เรียกการทดลองนั้นว่า
 แต่ละตัว มีประจุเท่ากับ  คูลอมบ์
 แต่ละตัว มีมวลเท่ากับ   คูลอมบ์
 ออยแกน โกลด์สไตน์ นักวิทยาศาสตร์ชาวเยอรมัน ได้ทำการทดลองโดยใช้หลอดรังสีแคโทด พบว่า อนุภาคบวก มีค่าอัตราส่วนประจุต่อมวลไม่คงที่ ขึ้นอยู่กับชนิดของก๊าซ และอนุภาคบวกที่เกิดจากไฮโดรเจน เรียกว่า โปรตอน์





แบบจำลองอะตอมของรัทเทอร์ฟอร์ด
อะตอมจะประกอบด้วยนิวเคลียสที่มีโปรตอนและนิวตรอนรวมตัวกันอยู่อย่างหนาแน่นอยู่ตรงกลางนิว เคลียสมีขนาดเล็กมากมีมวลมากและมีประจุบวกส่วนอิเล็กตรอนซึ่งมีประจุเป็นลบและมีมวลน้อยมากจะวิ่งรอบนิวเคลียสเป็นวงกว้าง การค้นพบนิวตรอน เนื่องจากมวลของอะตอมส่วนใหญ่อยู่ที่นิวเคลียส ซึ่งเป็นมวลของโปรตอนแต่โปรตอนมีมวลประมาณครึ่งหนึ่งของนิวเคลียสเท่านั้นแสดงว่าต้องมีอนุภาคซึ่งไม่มีประจุไฟฟ้าแต่มีมวลใกล้เคียงกับโปรตอนอยู่ในอะตอมด้วยเจมส์ แชวิก นักวิทยาศาสตร์ชาวอังกฤษ จึงศึกษาทดลองเพิ่มเติมจนพบนิวตรอนซึ่งเป็นกลางทางไฟฟ้า อะตอมของธาตุทุกชนิดในโลกจะมีนิวตรอนเสมอ ยกเว้นอะตอมของไฮโดรเจนในรูปของไอโซโทป

สรุปแบบจำลองอะตอมของรัทเทอร์ฟอร์ดอะตอมประกอบด้วยนิวเคลียสที่มีโปรตอนรวมกัน อยู่ตรงกลางนิวเคลียสมีขนาดเล็ก แต่มีมวลมากและมีประจุเป็นบวก ส่วนอิเล็กตรอนซึ่งมีประจุเป็นลบและมีมวลน้อยมาก จะวิ่งอยู่รอบนิวเคลียสเป็นบริเวณกว้าง

จากทฤษฎีอะตอมของ รัทเทอร์ฟอร์ด แบบจำลองอะตอมมีลักษณะดังรูป






แบบจำลองอะตอมของนีลส์โบร์

นักวิทยาศาสตร์ได้พยายามศึกษาลักษณะของการจัดอิเล็กตรอนรอบๆ อะตอม                                                                                โดยแบ่งการศึกษาออกเป็น 2 ส่วน ส่วนแรกเป็นการศึกษษเกี่ยวกับสเปกตรัมของอะตอม                                                                 ซึ่งทำให้ทราบว่าภายในอะตอมมีการจัดระดับพลังงานเป็นชั้นๆ ในแต่ละชั้นจะมีอิเล็กตรอนบรรจุอยู่                                                 ส่วนที่สองเป็นการศึกษาเกี่ยวกับพลังงานไอโอไนเซชัน                                                                                                                 เพื่อดูว่าในแต่ละระดับพลังงานจะมีอิเล็กตรอนบรรจุอยู่ได้กี่ตัว
นีลส์โบร์ ได้เสนอแบบจำลองอะตอมขึ้นมา สรุปได้ดังนี้
1.อิเล็กตรอนจะเคลื่อนที่รอบนิวเคลียสเป็นชั้นๆ ตามระดับพลังงาน                                                                                               และแต่ละชั้นจะมีพลังงานเป็นค่าเฉพาะตัว                                                                                                                           2.อิเล็กตรอนที่อยู่ใกล้นิวเคลียสมากที่สุดจะเรียกว่าระดับพลังงานต่ำสุดยิ่งอยู่ห่างจากนิวเคลียสมากขึ้น                                         ระดับพลังงานจะยิ่งสูงขึ้น                                                                                                                                                           3.อิเล็กตรอนที่อยู่ใกล้นิวเคลียสมากที่สุดจะเรียกระดับพลังงาน n = 1  ระดับพลังงานถัด                                                                    ไปเรียกระดับพลังงาน n =2, n = 3,... ตามลำดับหรือเรียกเป็นชั้น K , L , M , N ,O , P , Q ....

จากทฤษฎีอะตอมของ นีลส์โบร์ แบบจำลองอะตอมมีลักษณะดังรูป






แบบจำลองอะตอมของกลุ่มหมอก
อะตอมจะประกอบด้วย กลุ่มหมอกของอิเล็กตรอนรอบ ๆ นิวเคลียส โดยมีทิศทางไม่แน่นอน โอกาสที่จะพบอิเล็กตรอนบริเวณใกล้นิวเคลียสมีมากกว่าบริเวณที่อยู่ห่างจากนิวเคลียส

เนื่องจากแบบจำลองอะตอมของโบร์ใช้อธิบายได้ดีเฉพาะธาตุไฮโรเจนซึ่งมีอิเล็กตรอนเพียงตัวเดียว ดังนั้นถ้าธาตุมีหลายอิเล็กตรอน ทฤษฏีของโบร์ไม่สามารถอธิบายได้ นักวิทยาศาสตร์จึงค้นคว้า ทดลองจนเกิดเป็นแบบจำลองอะตอมแบบกลุ่มหมอก ซึ่งมีลักษณะดังนี้
  • อิเล็กตรอนเคลื่อนที่รอบนิวเคลียสด้วยความเร็วสูง วงโคจรไม่จำเป็นต้องเป็นวงกลมเสมอ
  • ไม่สามารถบอกตำแหน่งที่แน่นอนของอิเล็กตรอนได้
  • บริเวณกลุ่มหมอกหนาทึบ แสดงว่ามีโอกาสพบอิเล็กตรอนบริเวณนั้นมาก และบริเวณที่กลุ่มหมอกจาง แสดงว่ามีโอกาสพบอิเล็กตรอนน้อย



สรุปแบบจำลองอะตอม





อนุภาคมูลฐานของอะตอม

ชนิดของอนุภาคมูลฐานของอะตอม

ทุกอะตอมประกอบด้วยอนุภาคที่สำคัญคือ โปรตอนนิวตรอน และอิเล็กตรอน โดยมีโปรตอนกับนิวตรอนอยู่ภายในนิวเคลียส นิวเคลียสนี้จะครอบครองเนื้อที่ ภายในอะตอมเพียงเล็กน้อย และมีอิเล็กตรอนวิ่งรอบๆ นิวเคลียสด้วยความเร็วสูง คล้ายกับมีกลุ่มประจุลบปกคลุมอยู่โดยรอบ

อนุภาค
ประจุ ( หน่วย)
ประจุ (C)
มวล (g)
มวล (amu)
อิเล็กตรอน
-1
1.6 x 10 -19
0.000549
9.1096 x 10 -28
โปรตอน
+1
1.6 x 10 -19
1.007277
1.6726 x 10 -24
นิวตรอน
0
0
1.008665
1.6749 x 10 -24


อิเล็กตรอน (Electron) สัญลักษณ์ e - มีแระจุลบ และมีมวลน้อยมาก
โปรตอน สัญลักษณ์ p + มีประจุเป็นบวก และมีมวลมากกว่า อิเล็กตรอน ( เกือบ 2,000 เท่า)
นิวตรอน สัญลักษณ์ มีประจุเป็นศูนย์ และมีมวลมากพอๆ กับโปรตอน

เลขอะตอม เลขมวล และสัญลักษณ์นิวเคลียร์


1. จำนวนโปรตอนในนิวเคลียสเรียกว่า เลขอะตอม (
atomic number, Z)
2. ผลบวกของจำนวนโปรตอนกับนิวตรอนเรียกว่า เลขมวล (mass number, A)

A = Z + N โดยที่ เป็นจำนวนนิวตรอน
( เลขเชิงมวลจะเป็นจำนวนเต็มและมีค่าใกล้เคียงกับมวลของอะตอม)

การเขียนสัญลักษณ์นิวเคลียร์

เขียน (A) ไว้ข้างบนด้านซ้ายของสัญลักษณ์ธาตุ
เขียน (Z) ไว้ข้างล่างด้านซ้ายของสัญลักษณ์ธาตุ

X = สัญลักษณ์ของธาตุ
                                             

ไอโซโทป( Isotope )หมายถึงอะตอมของธาตุชนิดเดียวกัน มีเลขอะตอมเท่ากันแต่มีเลขมวลต่างกัน

ไอโซบาร์( Isobar )หมายถึงอะตอมของธาตุต่างชนิดกันที่มีเลขมวลเท่ากันแต่มีเลขอะตอมไม่เท่ากัน

ไอโซโทน ( Isotone ) หมายถึง อะตอมของธาตุต่างชนิดกันแต่มีจำนวนนิวตรอนเท่ากัน

หลักในการจัดเรียงอิเล็กตรอนในอะตอม
1. อิเล็กตรอนที่วิ่งอยู่รอบๆ นิวเคลียสนั้น จะอยู่กันเป็นชั้นๆตามระดับพลังงาน ระดับพลังงาน                                                            ที่อยู่ใกล้นิวเคลียสที่สุด( ชั้น K) จะมีพลังงานต่ำที่สุด และอิเล็กตรอนในระดับพลังงานชั้นถัดออกมา                                                จะมีพลังงานสูงขึ้นๆตามลำดับ พลังงานของอิเล็กตรอนของระดับชั้นพลังงาน                                                                                 K < L < M < N < O < P < Q หรือชั้นที่ 12 < 3 < 4 < 5 < 6 < 7

2. ในแต่ละชั้นของระดับพลังงาน จะมีจำนวนอิเล็กตรอนได้ ม่เกิน 22 เมื่อ n = เลขชั้นซึ่งเลขชั้นของชั้น K=1,L=2,M=3,N=4,O=5,P=6 และ Q=7

ตัวอย่าง จำนวน e - ในระดับพลังงานชั้น มีได้ ไม่เกิน 22 = 2 x 1 2 = 2x1 = 2
จำนวน e - ในระดับพลังงานชั้น มีได้ ไม่เกิน 22 = 2 x 4 2 = 2x16 = 32

ระดับพลังงาน

จำนวนอิเล็กตรอนที่มีได้มากที่สุด

n = 1 (K)           2(1) 2 = 2

n = 2 (L)           2(2) 2 = 8

n = 3 (M)         2(3) 2 = 18

n = 4 (N)          2(4) 2 = 32

n = 5 (O)          2(5) 2 = 32 ( 32 คือ เลขมากสุดที่เป็นไปได้ )

n = 6 (P)           2(6) 2 = 32

n = 7 (Q)          2(7) 2 = 32


จะเห็นว่ากฎออกเตตมีข้อด้อย คือ เมื่อระดับพลังงานมากกว่า n = 4 จะใช้ไม่ได้                                                                             อย่างไรก็ตามในธาตุ 20 ธาตุแรก สามารถใช้การจัดเรียงอิเล็กตรอนตามกฎออกเตตได้ดี
3. ในแต่ละระดับชั้นพลังงาน จะมีระดับพลังงานชั้นย่อยได้ ไม่เกิน 4 ชั้นย่อย และมีชื่อเรียกชั้นย่อย                                                ดังนี้ s , p , d , f

วิธีการจัดเรียงอิเล็กตรอนในอะตอม

การจัดเรียงอิเล็กตรอน ให้จัดเรียง e- ในระดับพลังงานชั้นย่อยโดยจัดเรียงลำดับตามลูกศร                                                                
 ( แนวทางการจัดเรียงอิเล็กตรอน ให้เขียนแผนผังก่อน ดังรูป)





จัดเรียงอิเล็กตรอนตามลูกศร ดังรูป





ไม่มีความคิดเห็น:

แสดงความคิดเห็น